Atomistically Informed Extended Gibbs Energy Description for Phase-Field Simulation of Tempering of Martensitic Steel
نویسندگان
چکیده
In this study we propose a unified multi-scale chemo-mechanical description of the BCT (Body-Centered Tetragonal) to BCC (Body-Centered Cubic) order-disorder transition in martensitic steel by adding the mechanical degrees of freedom to the standard CALPHAD (CALculation of PHAse Diagrams) type Gibbs energy description. The model takes into account external strain, the effect of carbon composition on the lattice parameter and elastic moduli. The carbon composition effect on the lattice parameters and elastic constants is described by a sublattice model with properties obtained from DFT (Density Functional Theory) calculations; the temperature dependence of the elasticity parameters is estimated from available experimental data. This formalism is crucial for studying the kinetics of martensite tempering in realistic microstructures. The obtained extended Gibbs energy description opens the way to phase-field simulations of tempering of martensitic steel comprising microstructure evolution, carbon diffusion and lattice symmetry change due to the ordering/disordering of carbon atoms under multiaxial load.
منابع مشابه
Microstructure Design of Tempered Martensite by Atomistically Informed Full-Field Simulation: From Quenching to Fracture
Martensitic steels form a material class with a versatile range of properties that can be selected by varying the processing chain. In order to study and design the desired processing with the minimal experimental effort, modeling tools are required. In this work, a full processing cycle from quenching over tempering to mechanical testing is simulated with a single modeling framework that combi...
متن کاملThe Effect of Tempering Treatment on the Microstructure and Mechanical Properties of DIN 1.4021 Martensitic Stainless Steel
To investigate the effect of tempering treatment on mechanical properties and the microstructure of DIN 1.4021 Martensitic Stainless Steel, austenite treatment was conducted for the samples at 1000 ºC temperature for 60 min and then the samples were oil quenched. Later, tempering treatments were performed for the samples at 500 ºC and 700 ºC temperatures for 2 and 5 h, respectively; then quench...
متن کاملThe effect of deep cryogenic treatment on mechanical properties of 80CrMo12 5 tool steel
Cryogenic treatment can be used as a supplemental treatment that is performed on some tool steels between quenching and tempering as an effective method for decreasing retained austenite and increasing wear resistance. In this research, the effect of deep cryogenic treatment (DCT) on dimensional stability and mechanical properties of 80CrMo12 5 tool steel was investigated. The martensitic trans...
متن کاملControlling the Mechanical Properties and Corrosion Resistance of Mild Steel by Intercritical Annealing and Subcritical Tempering
The effects of intercritical annealing and subcritical tempering on the mechanical properties and corrosion resistance of mild steel were studied. It was revealed that intercritical annealing followed by quenching resulted in the development of a ferritic-martensitic dual phase (DP) microstructure with high tensile strength, disappearance of the yield-point phenomenon, superior work-hardening b...
متن کاملInvestigation of Wear Mechanism in Quenched and Tempered Medium Carbon-High Chromium Martensitic Steel Using Dry Sand/Rubber Wheel
The aim of the present study was to investigate the effect of quenching and tempering temperatures on the microstructure, mechanical properties and the wear characteristics of medium carbon-high chromium wear resistant steel. In addition, the dominant wear mechanisms were studied. For this purpose, austenitizing and tempering temperatures were selected in the ranges of 900- 1000 °C and 300- 500...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016